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Different cases of the exchange interaction in the system (A + e + C +) are considered and corre- 
sponding expressions for this interaction are obtained. A suitable representation for the electron- 
atom interaction is also discussed. 
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The main purpose of the present paper is to obtain the expressions for the 
exchange interaction between two atoms (A and C) with considerably different 
ionization potentials 1 A ~2/2 and Ic = 72/2 * (C~o > 70). One-electron approxima- 
tion will be used for the wave function of the loosely bound valence electron of 
the atom C. We shall consider the case when the projection of the orbital angular 
momentum of this electron on the interatomic axis is equal to zero and the 
effective range Q of the interaction VA(r) between the electron and perturbing 
atom A is small compared with the interatomic distance R. 

The general expressions for the different cases of the exchange interaction 
are derived in Sections 2, 3, 4 and 5. In Section 6 the results of other works are 
discussed and in Section 7 we consider the suitable analytical representation 
for the potential VA(r ). 

2. 

Let I c > I/R. Then the perturbing atom A is in the classically forbidden 
region (for the valence electron). We shall determine the energy level shift of the 
atom C caused by the exchange interaction between two atoms. The corresponding 
Schr6dinger equations are 

(½A=Vc+Eo)~Po=O, Eo= - I c  ; (½A-Vc-VA+E)~p=O. (1) 

Multiplying the first equation by ~p (the wave functions are assumed to be real) 
and the second one by ~Po and integrating over the space f2 with the boundary 
surface S we obtain (Green's theorem is used) 

). 
1 Atomic units are used. 
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Taking ~2~ (that is the entire space with the exception of the sphere volume (]~ 
of the radius ~ around the atom A) as f2 we obtain 0P ~ ~Po in f2Q and ~ tp.~o o dr ~- 1) 

f~ 

e -  Eo = ½ ~ (~ v ~;o - ~o v ~;) ds  . (3) 
In O0 so 

exp(7'r-cos0) = ~o(R) @ ~ (2/+ 1) Pt(cos0) il(Tr) lpo(R + r )  ~o(R) (4) 
y i  l = 0  

where 72/2=Ic - 1/R (here 1/R is the first term of the expansion of Vc); r and 
0 are the coordinates of the electron with respect to the atom A (the polar axis 
is directed from A to C); il (and further kl, Jz, n3 are modified spherical Bessel 
functions multiplied by their arguments. The general form of the axially sym- 
metrical solution of the Schr6dinger equation is [1] 

~o(R + r) = ~Po(R) 1 ~ (21+ 1).Pt(cosO).qh(r ) (5) 
7 r t=o 

where ~ot is the solution of the corresponding radial equation. If ~ < r ~ R this 
function has the following form 

qo t = atit(Tr ) + btkl(Tr ) (6) 

At large r ~ must coincide with ~P0. Then one obtains from (3) 

7~ 2 
= }-',(21 + 1)'bdat. (7) E- eo - ~g(R)-)-, 

o 

In deriving (7) we have used the tacit assumption that there was no bound 
state A- with the energy -72/2  (otherwise the corresponding coefficient a t 
becomes zero). 

Consider now the following process 

When R ~ oo we have A-  + C + = A + C.  (8) 

( - ½ A + V A ) ~ G = E ,  tpa; ( - ½ A + V c ) ~ G = E c ~  c (9) 

where ~pa and ~c describe ionic and covalent states. 
The solution of the ordinary secular equation gives the following expression 

for the splitting between the adiabatic terms at the crossing point Ro of ionic 
(U ,=E,+V~ "~) and covalent (U~=E~+V~ ~) terms [U,(Ro)=U~(Ro),  or 
I c ~- fl2/2 + 1/R o; fl2/2 is the electron affinity of atom A; V~" = (n[ VK] m); S.c = (alc)] 

A E = 2 A U / ( 1  - S~Z,); AU=lF~°S ,~  - V~q. (10) 

By means of some simple transformations one can obtain 

A U = ½  ~soOp~ v ~G-~p.  v ~G) ds . (11) 

We put (when r > ~) Ar 
~. = k~(&)  PL(cos0) (12) 

r 
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and use (4) for ~p~. Then 

A UL = ~21ALWc(Ro)I • 

For the case L = 0 we have 

B e x p ( _ f l r ) , r > ~ ;  A U =  2~lB'lpc(Ro)l .  
/ P a =  r 

Note that B = 1 for the short-range 0-function) potential. 
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(13) 

(14) 

. 

Consider the case when the perturbing atom A is in the inner region of the 
atom C ( 1 / R -  Ic k2/2 > 0). In OQ we take the unperturbed wave function in 
the following form 

~Po(R + r) = ~Po(R).cos(kr.cos O) + lpl(R)'sin(kr" cos0). (15) 

To obtain the perturbed wave function ~p we use the analogy of electron-atom 
scattering theory. We find a stationary solution which meets the definite demands 
of symmetry relatively to the substitution O ~ rc-  O. Then one can obtain the 
following correspondence between the terms of ~Po and lp (when ~ < r ~ R) 

cos(kr 'cosO)~cos(kr 'cosO)+ l f~(O).cos(kr)-  f~(O)'sin(kr), (16) 
y 

sin(kr .cosO)~sin(kr .cosO)+ l f~'(O).cos(kr)+ f;'(O).sin(kr), (17) 
?. 

where f l  and f2 are real and imaginary parts of the scattering amplitude, f,~ 
and f "  are symmetric and antysymmetric parts of f,,. Expressing f through the 
scattering phases (6z) and using the formulas (16), (17), (15) and (3) we obtain 

7~ 
E - E o = - ~-  [~pg(R) 2 (4/+ 1) sin(2 62t ) + ~p~ (R) 2 (4/+ 3) sin(262t+ a)]. (18) 

[ l l J 

. 

Let there exist a quasi-stationary state when the electron with the orbital 
moment L is scattered by the atom A. Then one can establish (modifying the 
results of Ref. [1]) the following correspondence 

sin(26L)--*sin(26 °) + F cos(26 °) k n I c + e o + ~ - . ~ -  

where F is the width, E, = k2/2 is the resonance energy, 6 ° is the "potential" 
scattering phase, % ~- E, - 1/R. Thus the function E(R) has a pole (as in the case 
considered in the Sections 2 and 3). This pole corresponds to the pseudo-crossing 
of the covalent term with the term of the ionic state which becomes stable at 
R < R~(R~ "~ lIE.). 
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For the ionic state we use the wave function (see for example [-2]) which is 
normalized to unity in ~0 and has the following form at r > 

1 [sin 6°'jL(kr) + c o s  6°'nL(kr)] YLo(COSO) (20) ~pa= -;- 

The splitting of the adiabatic terms at the curve crossing point is given by 
(10), (11) 

A U = ]/zc(2L + 1) F/k. ~o, [ ~po(Ro)[ if L is even (21) 
COSOLI][~pl(Ro)[ if L i s  odd 

o 

We have obtained all the results using the assumptions that 0 ~ R and that 
the functions 7 and k were the slowly varying functions in the interval ( R -  Q, 
R + 0), that is Qa 

nR ~ ~ min(1, n0) (22) 

where x stands for 7 or k. Note if ;~  > 1 then the condition (22) allows to use the 
quasi-classical description of ~Po in D o. If z0 ~ 1 (and ~Po is slowly varying function 
in Do) then formulas (7) and (8) give the result of Ovchinnikova [3] 

E -  E o = 2~L~o2(R) (23) 

where L s is the scattering length. 
The particular cases of exchange interaction have been previously investigated 

by other authors. The result analogous to (7) has been obtained by Smirnov [-4] 
who used the more rigid (than 0 ~ R) assumption (R ~> I/7, Q) which is broken at 
large l and small 7. Komarov [5] has investigated the splitting of the hydrogen 
atom terms at large distances (1/R ~ flz/2, 72/2) in the f-potential field. Formulas 
(14) and (10) give the exact expression (in the case of &potential) for A U. Smirnov 
[6] and Janev and Salin [7] have attempted to consider a more general (than 
in [5]) case. However their approach is incorrect and their results do not turn 
into the result of Komarov (see the formulas (20) and (21) from [-7]). 

. 

To determine the coefficients b~/a~, B, 6~ in the equations above it is necessary 
to solve the Schr6dinger equation with the concrete potential Va(r ). Following 
the ideas of Hellman [8, 9] one may suppose that V a behaves as - o~/2r 4 at r > r g 
(e and rg are the polarizability and the characteristic size of the atom A) and as 
OT 

- -  at r < r A (T is the electron kinetic energy density and n is the electron density 

(?n ~T 
in A). The theory of Thomas-Fermi (TF) gives ~ = q~(r), where ~0(r) is the TF 

potential for A. Thus VA(r ) has a strongly repulsive character at small r. 
Note that considering the elastic electron-inert atom scattering Holtsmark 

[-10] and a number of other authors (see the book [,,11]) took V A = - q~(r) at small r 
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(the approximation of static field). This potential is strongly attractive. Although 
the theory-experiment agreement was quite satisfactory at high energies (when 
Born approximation is valid and the scattering parameters do not depend on 
sign of the interaction) there was considerable discrepancy at low energies. 
Besides there are bound states A-  in this attractive potential. This fact is in 
contradiction with the experimental results (see for example Ref. [12]) that there 
do not exist negative ions of inert gas atoms in their ground states. 

Let the potential VA(r) have the following form 

V A = - ~ / 2 r  4, r > r  0; V A=o% r < r  o (24) 

which reproduces the main properties of the electron-atom interaction. (Solving 
the Schr6dinger equation with the potential (24) numerically one can obtain the 
Ramsauer effect.) The Schr6dinger equation with the potential ~ r -4 has been 
considered in Ref. [13]. Supposing E = 0 and demanding ~0(ro) = 0 we can obtain 
an exact expression for the scattering length Ls and express L~ through ro 

L~ = [/~ ctg(l/~/ro); r 0 = ]/~/[Nzc + arcctg(Lj]/~)] (25) 

where N is a number of bound states in the potential (24) and the condition of 
the existence of the bound state is ]/~/r o > =. 

To obtain suitable analytical results we shall use (instead of V a from (24)) 
a modified potential W A which equals to zero if ] VA[ < [El and to V A -[- E if [ VA[ > [El. 
Then Q=(~/2[EI) 1/4. If there is only one bound state A-  with L = 0  than using 
WA we obtain the following relations between ~, L~, ro and fl: 

]/~ • L ~ = ] / ~ c t g 2 - a r c t g  ; 2=fl1/2"~ 1/4. (26) 
r° = 2 + = - arctg[2/(1 + 2)] ' 

For the systeme e - H  (e = 4.5 ; /3 = 0.236 [12]) one can obtain L~= 6.55. Varia- 
tional calculation with 1156 parameters [14] gives Ls = 5.96. 

For the coefficient B (14) we obtain 

(27) 

xo=rofll/2~-l/4; f(2) is given in Table 1. Note that f 2  gives the part of the 
electron density in the region r > 0. For the ion H -  we obtain B = 1.66; variational 
calculations give 1.63 and 1.68 [12]. 

Then the splitting between the ionic term (H + + H- )  and different covalent 
ones (H(ls) + H(n/); n = 2, R o = 11.1; n = 3, R o = 35.6 [15]) was calculated and 
compared with the variational calculation [15] (see Table 2 where AE,  g are 
given in eV). 

Note that by averaging (18) over different places of the perturbing atom A 
one can obtain the shift of the spectral line of the perturbed atom C (compare 
with the result of Alekseev and Sobelman [-16]). 

The author is indebted to Prof. E. E. Nikitin for the discussion of the present 
work. 
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Table 1 

;~ f 

0 1 
0.25 0.956 
0.5 0.881 
0.75 0.815 
1 0.763 
1.25 0.722 
1.5 0.690 
1.75 0.665 
2 0.644 
2.25 0.627 
2.5 0.612 
3 0.589 
3.5 0.571 
4 0.558 

Table 2 

(n, l) (2, 0) (2, 1) (3, 0) (3, 1) (3, 2) 

Work [15] 0.333 0.407 4-911o - 3 6.4010 - 3 4.581o - 3 
Present work 0.381 0.461 5' 83to - 3 7.431o - 3 5.4310 - 3 
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